INELASTIC RESPONSE OF TALL STEEL FRAMES

By Masaaki Suko' and Peter F. Adamsll

SYNOPSIS

A computer program has been developed to analyze steel frames with or
without shear walls, which are subjected either to blast loads or to earth-
quake motions. Equivalent rotational springs are used at the ends of each
member to account for the influence of axial load, the inelastic behavior
(including the strain-hardening effect) of the member and joint distortion.
The stiffness matrix is computed for the assemblage of spring connected
members. The dynamic equations are solved by changing the stiffness matrix
so that it is compatible with the deteriorated structure at every instant
of the motionm. A behavioral study presents the response of the structure
to an earthquake motion.

NOTATION

The following symbols are used in this paper:

{Bi} = constant vector

C = U.D.L. term in slope deflection equations

{ci} = damping coefficient (viscous damping)

D = U.D.L. term in slope deflection equations

E = modulus of elasticity

Est = modulus in strain hardening region

I = moment of inertia

K =  /PJET

Ki .. Kg = coefficients in modified slope deflection equations
mij] = stiffness matrix for the frame in terms of story shears
L = member length (point of inflection to the joint)
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L, = member length of elastic portion

Lz = member length of inelastic portion

M = end moment

Mpc = reduced moment capacity

Muc = ultimate moment capacity

m, = mass concentrated at i-th floor

P = axial load

Q = transverse load

{Qi} = story shears

{Ri} = blast load distribution factor

X = floor level deflection relative to the ground
ii = floor level velocity relative to the ground

§i = floor level acceleration relative to the ground
?o(t) = ground acceleration, function of time

Z(t) = blast load, function of time

a,8,y,8 = coefficients which express M-AO relatiomship

A = deflection

Ae = elastic deflection

Ap = inelastic deflection

Aids = rigid portion of beam

Az = flexible portion of beam

C] = joint rotation

A® = relaxation angle

£ = ratio of bottom story stiffness to top story stiffness
p = sway rotation

w = uniformly distributed load

w = circular frequency in the first natural mode of undamped

frame,
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INTRODUCTION

The design of structural frames to resist the forces induced during
an earthquake motion or blast disturbance is generally a semi-empirical
procedure with the forces specified being based on dynamic analyses of
simplified, idealized structures. In order to design on a more rational
basis it is first necessary to have available procedures for the analysis
of more complex structures (2) (3) (4) (5) (7).

The analysis presented herein has been programmed for the digital
computer. The analysis traces the response of a multi-story, multi-~bay
structure to a dynamic disturbance resulting from a blast load or an
earthquake disturbance. The inelastic behavior of the structural members
is considered (including strain hardening) and the frame may contain one or
more shear walls. The secondary moments produced by the vertical loads
acting through the sway displacements of the frame are considered as are
the influences of joint distortions or semi-rigid connections. This report
describes the analytical procedure and presents a behavioral study of a
series of ten-story, two-bay steel frames subjected to an earthquake motion.

ANALYTICAL PROCEDURE

The frame to be analyzed is modeled as shown in Figure 1. In the
analysis the masses, m,, are assumed to be concentrated at each floor
level. Damping forces, ¢ (x, - x.,.), are assumed to be developed by the
relative motion of adjaceiit fioors, where c; represents the damping co-
efficient. A rotatiomal spring connects every member end to the correspond-
ing joint. The shear wall is simulated by a column which has a bending
stiffness and strength equivalent to that of the original shear wall and
is attached to the adjacent beams through rigid stubs. The stubs simulate
the wall width effect.(8) Uniformly distributed loads are applied to the
beams, although the possibility of plastic hinging within the span length
of the beam is not checked. The bottom story columns are attached to the
foundations by elastic rotational springs in an attempt to account for the
flexibility of the foundation.

Equivalent Rotational Springs

An equivalent rotational spring is used at the ends of each member to
account for the influence of axial load, the inelastic behavior (including
the strain hardening effect) of the member and the joint distortion. The
derivation of the spring properties will be accomplished in a series of
steps.,

The column shown in Figure 2 is subjected to a constant axial load,
P, as well as the transverse load, Q. The moment—curvature relationship
for the material and cross-section of the column is shown by the full lines
in Figure 3. 1In Figure 3, EI represents the elastic flexural rigidity of
the member and E _I, the rigidity in the strain hardening range. M
represents the plastic moment capacity under the axial load, P, and pe
M __ the ultimate moment capacity of the member. The figure shows the
correlation of the moment curvature relationship of pure bending to bending
with axial load,
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The deflection, A, at the top of the column (Figure 2), is given by:

3
8= fran ke - 0}/ 1)

.« (D
for Q < KMpc/tan KL (elastic behavior)
A=h + 4, C (@)
where Ae = (Mpc - QLl)/P
Q tan K'L2 n '
= A~ m : [ ] -1
Ap P LZ) + > (sin K Lytan K'L, + cos K'L, )
.. (3)

for Q > KMpc/tan KL (inelastic behavior)

In the above, m represents the intercept as shown in Figure 3 and:

K =¥ P/EI
K' = /P/EStI

The actual behavior of the member can be approximated by the system
shown in Figure 4. The spring at the bottom of the column is forced through
a rotation, A9, for the given transverse load, Q, (or the end moment, M).
The spring is chosen so that the deflection at the top of the colum is equal
to that obtained from the solution of Equations 1 or 2, even though the axial
load is eliminated. The stiffness of the column is assumed to remain equal
to the elastic stiffness, EI, throughout the length, regardless of the yielded
condition of the actual column.

.. (&)

In order to satisfy the above condition, the spring at the column base
must produce a rotation, AO, for a given value of M. This rotation is
given by:

AO =

[l

ML
* 3Er .. (5

In which, A is the value given by either Equation 1 or Equation 2, depending
upon the value of Q. The end moment is positive in a clockwise direction,
therefore:

" M= -QL N ()]

A typical M - AO relationship is shown by the full lines in Figure 5.
The dotted lines show the equivalent curves in the absence of strain hardening.
This relationship is terminated when the actual moment at the bottom of the
column in Figure 2 reaches the ultimate moment M . The above relationships
account for both the inelastic behavior and the axial load effect by correctly
selecting the properties of the rotational springs at the ends of the member.

The connection of a member at a joint is not rigid, that is, relative
rotations of the ends of the connected members will occur for example in a
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(9)

bolted joint » as shown in Figure 6. Curve B in Figure 7 plots the relative
rotation against th?6?ng189ment for this situation. Also the shear deformation
of the joint panel may cause an additional end rotation of the framing
members as shown by curve C in the same figure. Curve A reproduces the M-AD
relationship of Figure 5, which includes the effects of the axial load and
inelastic action. If the three M-AQ relationships, given by curves A, B, and

C in Figure 7 are combined, the resulting curve is shown as curve D in Figure 7.
If the spring is selected to follow this M-AQ relationship, it will be possible
to approximate the effects of axial load, inelastic behavior and joint dis~
tortion by a single set of equations.

The moment-relative rotation relationship must also account for the un-
loading behavior. For instance, on the loading path the relative rotation
may be found at point S (Figure 8) for a given moment on the curve O-A-B.
Then, in order to account for the possibility of reversal of moment, the new
M~AO relationship is prepared as the line S A" B" C" (Figure 8). This method
of tracing hysteresis is similar to that employed in the investigat%i? of
steel columns subjected to cyclic bending and constant axial force .

Slope Deflection Equations for Members Restrained by Rotational Springs

The M-AO relationship is taken as that shown by the full lines in
Figure 8, where the dashed lines show the corresponding elastic-plastic case.
If such relationships are determined for member ends ¢ and d (Figure 9),
the slope deflection equations for the member, ab are modified as follows.
The member is assumed to consist of rigid portions at the ends, ac and db,
and a flexible portion, cd, having a stiffness EI. The relative rotation at

point ¢, A® , in this deflected state, and the end moment, Mcd’ have the
relationshiﬁ given by:

Mcd = 0t("Aec) + 8 . . (7D
and similarly at point d,

Mge = Y(-BB + 8 .. (8)

and if a uniformly distributed transverse load, w, is applied over the
length of the member, the end moments Mab and Mba are calculated as:

Mab = %E% (K‘ea + Kzeb + Kip + Ky §.+ ng-) + Kg ccd}/K7 + K°Dab
I €))
ba = {%% (K20, + K;Gb + Kip + Ks §+ Ka -3—)+ K;Cdc}/K#K;Dba
N 410}
where
Ceq = = Tz ¥ (M) ... D)
Cae = I% W (Al e
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=_ 1 2
KsDab = 2 W)\]_ (l—xz) L . (13)
KiD, =-% wha (1-2;) 12 N
and
_ A A1y 2 3 MEID A 2E1 A1 2E]
Ky = 246 X +6 Qx;) +6 ) + 12 YL +6 ot 6 L
. . (15)
: A Apy 2 El A,E1 A 2E1 | L A,2FI
= o 2] el _L_z__ _2_3.._ —Zﬁ_
Kz 2+6 )\3+6(}\3) +6aA3L+12 a13L+6aA3L+6y)\3L
. (16)
- AL X5 Mg A EI 2Kl 1,1 A )gEl
Kz ]+3)\3+3A3+6 A3 +6G)\3L+6Y>\3L+6(G+Y) AaL
v . (1D
Ka= - (Ki#K3) .. (18)
] ]
Ks = - (K3 + Kz) ... (19)
A El M ET
Ku=2+31—;+6m+6m o .. (20)
Ke=2+322 ¢ EI A1
A3 aX3|:+6a)\3L «e . (21
Ks=1+3 %§-+ 6 %i%éf C e (2D
' A A-F1
Ks=1+332+6 ;%;71' c . (23)
_ EI__ 6MEI . AEI
Ke =146 50T~ ohe?l * Oy020 . (24
v EI MEL L AEl
K‘°]+6al3L+6aA3L GyAgL . (25)
1.1, EI £
= + = —_ —
Kr=1+4 G+P o * 2 oo TS
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If the sway rotation, p, is set equal to zero in the above equations,
the behavior of a beam is simulated. If

w=0 N &)
and

A =7Y2=0; A3 =1 ... (28)
are substituted, the equations simulate the action of a column.

Analysis of Complete Frame

The axial loads and points of inflection are estimated for each member
in the structure. These values are then assumed to remain constant during
the analysis of the frame. 1In calculating the moment ~ relative rotation
relationship, the length of the equivalent cantilever, L, (Figure 2) is
taken as the length from the point of inflection to the joint and the
compressive load, P, is the estimated axial load for a column and zero for
a beam; it is thus possible to prepare the appropriate M-AO relationships
for each member end. 1In the actual case the position of the points of
inflection and the values of the axial load are not known beforehand and
moreover may change during the loading process, consequently it is impossible
to account exactly for these effects. Generally, however, these values do
not change drastically during the motion of the structure, especially for
the interior members of regular frames. Changes in the length, L, (Figure 2)
produce relatively small changes in the M~AO relationship, thus the M~AQ
relationship is primarily a function of the axial load and the material
properties.

After the M-AQ relationships have been developed for each member end,
the stiffness matrix [K] , can be developed in terms of the story shears
using the modified slope-deflection equations. The floor level deflection,
{x}, and the story shears, {Q}, are then related by:

{0} = [K]{x} + {B} .. (29)

In which, the vector {B} is zero vector until any portion of the structure
yields, unless the gravity load produces a lateral sway.

STATIC CALCULATION

In order to check the above procedure, an analysis based on this concept
has been programmed to determine the response of a given frame to a static
load. The calculated results are checked against published(Yi}ues and are
found to be reasonable. One example is given in Figure 10 . The
structure analyzed by Yarimci is shown in the inset. The ordinate represents
the horizontal load of each floor, H, and the abscissa the sway at the first
story, A. The solid line shows the test result and the dotted line A the
theoretical calculation by Yarimei. The present calculation is compared
with them by the dotted line B.
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DYNAMIC EQUATIONS AND NUMERICAL SOLUTION

If the mass is assumed to be concentrated at each floor level, the
dynamic equations under earthquake motion are written as follows:

X = -

=R

{e,x, +Q, ({x}) + 5, (t)}
g i1 1 . .. (30)

Where the suffixes correspond to the story number as shown in Figure 1, and,

: displacement of i-th floor relative to the ground.
velocity of i-th floor relative to the ground.

Xt acceleration of i-th floor relative to the ground.
m, : mass concentrated at i-th floor.

¢yt damping coefficient.

and Qi ({x}) 1s a function of the deflected shape of the structure {x},
and répresents the shear force in the i-th story, which is given by the
i-th element of vector, {Q}, in Equation 29 and, Si(t) is:

+ Yo (t) x CSM, -

&
8;(t) = oA 3 ™ Cy%iq . . . (3D)

i
where ¥o(t): ground acceleration during the seismic motion

and, CMA, and CSM, are given by:

i i
for i=1 (roof): CMAi = 0, CSMi =m
i-1 " i
for i=2~n-1: CMAi = jElmjxj, CSMi = j£1n3 T
n-1 n
for i=n (bottom): CMA, = jzlmﬁﬁj, csM, = jilmj

The evaluation of the damping effect is complex. However, it is simply
assumed herein that the damping force is proportional to the relative velocity
of each floor and given by:

ci(:':i - ii+l) « 0. (33)

where e is chosen as:

¢y = 2K/ w ... (38)

In this expression, K i is the i-th diagonal element of the initial stiffness
matrix (Equation 29), and w is the circular frequency in the first natural
mode of the undamped structure; h, is a percentage corresponding to the
percentage of critical damping us&d in the analysis of simple frames.

In order to solve the simultaneous, second order differential equatioms,
such as Equation 30, the linear acceleration method is used. The response
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of an example structure was computed using a time interval less than 20% of
the smallest natural period of the structure, in order for the numerical
integration to converge.

After finding the equilibrium position of the structure for each
time interval, the end moments for every member are calculated and the
member is checked to see if the end moment is compatible with the M-AQ
relationship used for this state. Unless the correct choices have been
made, the stiffness matrix is revised and the above procedure is repeated.

Response of Steel Frames to Earthquake Motion

Twelve, ten story two bay frames were analysed under the ground motion
of the NS component of the (1940 California) El Centro earthquake scaled
so that the maximum acceleration was 0.16g. The frames are classified
according to the girders used as A,B, or C (See Table 1) and according to
the distribution of column strength and stiffness, as A,B,C, or D (see
Table 2). 1In Table 2, only the plastic moment capacities in the absence of
axial load are listed. These capacities would be reduced in each story
due to the presence of axial forces. Thus Frame AB represents a frame
having type A columns and type B beams. The dimensions of the frame
are shown in Figure 11; also listed in the inset of this figure, are the
weights assigned to each floor level and the axial forces in the columns
of each story.

The moment curavture relationships for EE? members of the frames are
assumed to be of the shape shown in Figure 3 s where it is assumed that
Mu = l.ZMb = 1.2 (oyz) and cy = 36 ksi.

In performing the analysis, the structure is modeled as shown in Figure 1.
It is assumed for these frames that no distributed loads are applied to the
girders and that the column bases are fixed. The damping coefficients, h,,
are taken as 0.01. The properties of the rotational springs are computed
by assuming that a point of inflection forms at mid-span of each member.
Typical M-AO curves are shown, for a girder in Figure 12 and for a column
in Figure 13.

The total weight of steel in each frame depends primarily on the girder
weight. The total weight of the colummns in the frames does not vary signi-
ficantly. The period of the frame is also primarily a function of the girder
stiffness. The periods for the twelve frames considered (1st mode) are listed
in Table 3.

The results of the response calculations are summarized in Table 4.
In Table 4, the numbers of plastic hinges to form are tabulated as well as
the maximum values of the base shear coefficient, total displacement and
relative story displacement for each analysis. As expected, the frame
having flexible girders (Type B) develops lower base shears and is subjected
to larger total displacement than the other frame. Generally speaking,
however, the relative story displacements are not large and this is reflected
in the relatively small amount of plastic hinging in these frames.

The behavior of Frames AA and DB, when subjected to ground motions of

varying intensity, are compared in Figures 14 to 18. Figure 14 shows the
locations of the inelastic regions developed during the (scaled) original
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earthquake motion. Figure 15 shows the number of hinges which develop during
ground motions of varying intensity. The total displacement s{at the roof) are
very similar for the two frames, as shown in Figure 16 but the relative story
displacements are much smaller for Frame DB (flexible girders), as shown in
Figure 17. The maximum base shears for this frame are also considerably lower
as shown in Figure 18. As the intensity of the ground motion increases, the
inelastic action is distributed throughout the building height in Frame DB,
whereas for Frame AA it is localized at levels adjacent to the changes in
column sections.

Summary and Conclusion

A procedure has been described for the dynamic analysis of multi-story
multi-bay structures with or without shear walls. The procedure accounts
for the inelastic action of the members (including strain hardening), the
secondary moments produced by the axial loads and possible joint distortions
in the structure.

The equilibrium equations are formulated in terms of modified slope
deflection equations and the resulting stiffness matrix is modified to
be compatible with the deteriorated structure at each instant of the motion.
The equations of motion are formulated by assuming a linear variation of
acceleration and are solved by iteration.

Dynamic analyses were performed on twelve ten-story two-bay steel frames
to study the effect of variations in column stiffness distribtuion over the
building height on the response.

The role of shear walls and the effect of axial loads as well as strain
hardening and joint distortion will be the object of future studies using
this computer program.
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Beam Type Moment of Plastic Moment Section
Inertia (in ) Capacity (in-K)
A 1141 4401 21WF55
B 344 2551 10WF59
| Cc 516 2574 16WF41
TABLE 1
PROPERTIES OF BEAMS
(sec)
g A B 4
Col
A 2.39 3.42 2.99
B 2.33 3.39 2,95
4 2.34 3.42 2.96
D 2.31 3.38 2.93
TABLE 3

UNDAMPED NATURAL PERIOD (lst MODE)

Column Type Story Moment of Plastic Moment Section |
Inertia (in ) Capacity (in-K)
A 1-3 110 1032 8WF31
4-6 334 2551 10WF59
7,8 723 4464 124F85
9,10 931 5677 12WF106
B 1-6 344 2551 10WF59
7-10 723 4464 12WF85
c 1-10 533 3342
Properties
D 1 408 2592 do not
2 433 2743 correspond
3 458 2893 to existing
4 483 3042 sections.
5 508 3192
6 533 3342
7 558 3490
8 583 3639
; 9 608 3787
i 10 633 3935
TABLE 2
PROPERTIES OF COLUMNS
a) Number of Plastic Hinges b) Maximum Base Shear Coefficient
eam A B c e an A B 4
Coli Col
A 13 2 14 A .115] .065 | .076
B 10 i 7 B .108 -059 .081
c 8 4 9 C .073 .054 .064
D 10 1 9 D .091] .059| .077

¢) Maximum Roof Displacement

d) Maximum Relative Storey
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(in) Displacement (in)
Beam A B C eam A B [
Col Colus

A 9.7 12.4 | 11.3 A 3.05] 1.80§ 2.61

3 3) 3

B 8.9 12.0 11.2

B 1.37 1.71 1.82

C 6.9 11.7 | 10.8 (6) (6) (6)
D 8.0 11.8; 11.5 c 1.29 1.64 1.78

(10) | (8 9
D 1.45 1.64 1.55

9 (8) (8)

*The numbers in brackets represent
the story where maximum displacement
occurred.

TABLE 4

RESPONSE TO EL CENTRO EARTHQUAKE, MAY 1940

NS COMPONENT, MAXIMUM ACCELERATION =.16G
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